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Abstract

A transport equation for the turbulent viscosity was
assembled, using empiricism and arguments of dimen-
sional analysis, Galilean invariance, and selective de-
pendence on the molecular viscosity. It has similarities
with the models of Nee & Kovasznay, Secundov et al.,
and Baldwin & Barth. The equation includes a destruc-
tion term that depends on the distance to the wall, re-
lated to the one in Secundov’s model and to one due
to Hunt. Unlike early one-equation models the result-
ing turbulence model is local (i.e., the equation at one
point does not depend on the solution at other points),
and therefore compatible with grids of any structure
and Navier-Stokes solvers in two or three dimensions.
It is numerically forgiving, in terms of near-wall resolu-
tion and stiffness, and yields fairly rapid convergence to
steady state. The wall and freestream boundary con-
ditions are trivial. The model yields relatively smooth
laminar-turbulent transition, at points specified by the
user. It is powerful enough to be calibrated on 2-D mix-
ing layers, wakes, and flat-plate boundary layers, which
we consider to be the building blocks for aerodynamic
flows. It yields satisfactory predictions of boundary
layers in pressure gradients. Its numerical implemen-
tation in a 2-D steady-state Navier-Stokes solver has
been completed and is discussed. The cases presented
include shock-induced separation and a blunt trailing
edge. The model locates shocks slightly farther forward
than the Johnson-King model. It performs well in the
near wake and appears to be a good candidate for more
complex flows such as high-lift systems or wing-body
junctions. However, k&% it is not clear whether steady
solutions will or should be obtained.
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Motivation and Related Work

The aerodynamics community feels the need for, and
is ready to invest in, a new generation of turbulence
models, more onerous than the algebraic models but
with a wider envelope in terms of low and grid complex-
ity. The Baldwin-Lomax model [1] made Navier-Stokes
calculations possible in situations that are awkward for
the Cebeci-Smith model [2], because the thicknesses of
the boundary layer are not well defined. The Johnson-
King model [3] has by-and-large fulfilled the demand for
more accurate prediction of shock/boundary-layer inter-
actions, compared with the Cebeci-Smith and Baldwin-
Lomax results. However these models, even when used
in Navier-Stokes codes, are boundary-laver models in
spirit. Physically, they treat the whole boundary layer
as a single, tightly-coupled module, which becomes in-
correct when detached and multiple shear layers are
present. At the implementation level, they rely on sur-
veying the velocity or vorticity profile on a smooth grid
line, roughly orthogonal to the surface, thus being “non-
local”. This becomes expensive and awkward when an
unstructured grid is used [4]. Even when the only com-
plication is that two solid bodies are present, imple-
menting an algebraic model requires decisions that bor-
der on artificial intelligence and cannot be fully auto-
mated. This comes in addition to the poor accuracy
expected when a boundary-layer model is applied to a
massively-separated flow, for instance. Generalizations
of algebraic models to multiple thin shear layers are
quite conceivable in boundary-layer calculation meth-
ods, by combining the eddy viscosity “sustained” by
each shear layer and confined to its vicinity. However,
in full 2-D calculations, the orientation of the grid lines
with respect to these shear layers is not under control.
In addition, unstructured-grid methods are becoming
more common. Finally, we do not know of an algebraic
mode] that ensures continuity of the eddy viscosity be-
tween the airfoil block and the wake block, in a C-grid
setting. while offering a plausible formula in the wake.
We have abandoned efforts in that direction.




On the other hand, transport-equation models such
as k-¢ and higher models [5] are usually “local”, al-
though some have non-local near-wall terms, and have
been available for years. However, they are far from
having shown a decisive advantage for the prediction
of shock/boundary-layer interactions or separation from
smooth surfaces [6]. They may be superior for massive
separation, but we do not have enough data, nor pow-
erful enough codes, to assess that. They are also much
more difficult to use. This is not so much because of the
extra storage, but because they require finer grids near
a wall, involve strong source terms that often degrade
the convergence, and demand non-trivial upstream and
freestream conditions for the turbulence variables. The
near-wall problems often lead to the use of wall func-
tions [7], which are unwieldy and lose any justification
in the situation that matters most, namely, separation.

The new Baldwin-Barth model [8] is an attractive in-
termediate. It has only one equation and is local, ex-
cept for the y* dependence which they plan to dispose
of in the long term. It is derived from the k-¢ model,
through some further assumptions. Near the wall it
does not require finer resolution than the velocity field
itself. Depending on the version, it predicts adverse-
pressure-gradient cases and shock interactions better
than Baldwin-Lomax, but not consistently as well as
Johnson-King. Its accuracy will improve in time, and it
is much more practical than two-equation models. We
make more specific remarks on this model during the
presentation of the new one.

The present project was prompted by Baldwin &
Barth’s work, and by the belief that generating a one-
equation model as a simplified version of the k-¢ model
is not optimal. A one-equation model is simple enough
that it can be generated “from scratch”, which may lead
to better performance and certainly gives fuller control
over its mechanics. A case in point is the Baldwin-
Barth diffusion term, which is constrained by the k-¢
ancestry and the further assumptions made. We also
allow a “semi-local” near-wall term, as described be-
low. Our calibration strategy was different. We expect
to show that the new model has the same properties as
that of Baldwin & Barth in terms of compatibility with
unstructured grids and benign near-wall behavior, and
is more accurate, especially away from the wall, as well
as slightly more robust. For instance, it accepts zero
values in the freestream.

The roster of one-equation models also includes those
of Bradshaw, Ferriss, & Atwell [9], Nee & Kovasznay
[10], Secundov and his co-workers [11], and Mitcheltree,
Salas, & Hassan [12]. Except for Secundov’s and Bald-
win & Barth’s, these models are not local, since they
use length scales related to the boundary-layer thick-
ness. This contributes to the common claim that one-
equation models are not “complete” (i.e., they require a
carefully-chosen length scale for each new flow) and that

two-equation models are the simplest complete mod-
els. The Nee-Kovasznay model was not followed upon
partly because it was not affordable at the time (1969).
The Secundov model is currently entered in the Col-
laborative Testing of Turbulence Models (CTTM, [13])
and Prof. Bradshaw was kind enough to provide the
one-page description that was submitted. Dr. Secun-
dov provided a few details in a personal communication ’
as well as a list of publications ranging from 1971 to
1986, but none in English. This model is presented as
an evolution of the Nee-Kovasznay model but is rich in
near-wall and compressibility corrections. In particular
we “reinvented” their near-wall destruction term. It is
expected for simple empirical models, developed under
roughly the same constraints (invariance, and so on),
to exhibit strong similarities. However, the leeway is
large enough to produce models with widely different
performance.

Presentation and Calibration of the Model

Qverview

In this section we present four nested versions of the
model from the simplest, applicable to free shear flows,
to the most complete, applicable to viscous flows past
solid bodies and with laminar regions. As each addi-
tional physical effect is considered, new terms are added
and calibrated. They are identified by a common letter
subscript in the constants and functions involved (e.g..
constant ¢y, function fy7; note that the constants are
normalized so that the functions are of order 1). The
new terms are passive in all the lower versions of the
model, so that the calibration proceeds in order. This
presentation may seem heavy, but should be instructive
as it allows the reader to criticize the theory or the cal-
ibration layer by layer and to test the relevant version
in the situation he or she chooses. It should also help
preserve some clarity in later alterations of the model.
The Appendix gives a compendium of the equations for
the complete model.

Constitutive Relation

The central quantity is the eddy viscosity v,. The
Reynolds stresses are given by —wu; = 21, 5;; where
Si; = (0Ui/dzj + 8U;/0z4)/2 is the strain-rate ten-
sor. Compared with a two-equation mode] we naturally
miss the k term (turbulence kinetic energy). This is not
a major effect in thin shear flows, and the addition of
2k/3 to the diagonal elements of the stress tensor is ap-
proximate in any case. Note that even in two-equation
models there has been an erosion of the meaning of k
itself [14], and also that the equation v; = Cuk”/¢ is
clearly not satisfied in the log layer with the true & and




¢. We are basing this criticism on experimental and
direct-simulation results [15].

In a one-equation model, or in other models (e.g.,
zero-equation) which produce v; but not &, we could ob-
tain a rough approximation of k as proportional to the
stresses given by 14S;;, and introduce it on the diagonal.
It would certainly be consistent to make it large enough
for the Reynolds-stress tensor to be positive-definite.
Usually the trace of the tensor is significantly larger
than needed for positive-definiteness, with a given devi-
ator. The eigenvalues are roughly k/3, 2k/3 and k in a
shear flow; none are very close to 0. We can approach
this by adding v21,1/5;;5:;/(3a1) to each diagonal el-
ement, where a; is the “structure parameter” [9]. This
approximation may have some value in flows other than
thin shear layers, even though it is far from universal.
For instance, it fails on the centerline of a wake. The
difficulties in introducing such a nonlinear component
in the turbulent term of the momentum equation may
be another factor.

Free Shear Flows

Turning our attention to v; itself, since there is no
exact transport equation we could approximate term
by term, we take an empirical approach. We do not
even follow the classical procedure of establishing and
calibrating the model in homogeneous turbulent flows
first. This is because the model, with its single equa-
tion, is too simple to yield rich behavior in homogeneous
turbulence, and also because of our emphasis on aero-
dynamic flows and our limited interest in homogeneous
turbulence. Thus we proceed to a model equipped with
diffusion terms and calibrate only at that level.

We construct the model by gathering quantities, de-
rived from the mean flow field and from vy, which have
Galilean invariance. For instance, the mean velocity
U is not receivable. We then invoke common notions
of turbulence—for instance, related to its diffusion—
to assemble dimensionally correct terms that together
can constitute a plausible transport equation for ;. We
consider free shear flows at high Reynolds numbers, and
accordingly the molecular viscosity is not allowed in the
equation. The reasoning is that in such flows the energy
and information cascades flow only from the large scales
to the small scales.

The left-hand side of the equation, for correct invari-
ance, is naturally the Lagrangian or material derivative
of vy: Dy /Dt = v/t +U;0v/dz;. On the right-hand
side we provide a production term, and diffusion terms.

For the production term, the deformation tensor
OU,/dz; presents itself. Since v, is a scalar we seek
a scalar norm, denoted by S, of that tensor. Sv, then
has the desired dimension. A term such as 8V/8z (obvi-
ous notation), however tempting to mimic streamline-

curvature effects, i1s not properly invariant. We haw
used the vorticity w = /$2;;Q;,. where Q;; = oUy/8r;—
O0U;/0x;. The argument is that. in the flows of interest
to us, turbulence is found only where vorticity is, both
emanating from the solid boundaries. There are regions
of vorticity without turbulence behind shocks; it is nor-
mally too weak to produce much eddy viscosity. There
is a case for using the strain rate \/25;;5;; or the norm
of the whole tensor /U, ;U, ; instead of w, but we have
not yet tested the model in cases for which it would
make a difference. We normalize any candidate so that
it reduces to |Uy| in a simple shear flow. Note that |U,|
is not a smooth quantity, but it does not seem to upset
the numerical methods.

The production term, and in fact the restriction of
the model to homogeneous turbulence, is

%:cbl S v, (1)
The subscript b stands for “basic”. The response of
the model in homogeneous turbulence is dull, but not
grossly inaccurate. The eddy viscosity is stationary in
isotropic turbulence (Dv;/ Dt = 0, because S = 0). It is
accepted that in such a flow the energy & is proportional
to t~¢/5. Then the simplest combination that has the
same dimensions as v;, namely k%/¢ where ¢ is the dis-
sipation, slowly decays like t~/%_ In anisotropic flows
v, can only increase under the effect of production, in
a manner that depends on the choice of S§. That choice
may be re-examined later, but if we consider a shear
flow with S = |Uy| we observe that vy grows exponen-
tially like exp(cy;St). This is the “classical” behavior
for shear flow, with a growth rate in the 0.1 to 0.16 range
according to experiments. Qur calibration on inhomoge-
neous flows yields values of ¢3; between 0.13 and 0.14.
Thus, we do not emphasize homogeneous turbulence,
but we are not in strong conflict with it. The Baldwin-
Barth and Secundov models have rather large produc-
tion constants, at least 0.2. Note that we have not found
any plausible and invariant quantity that could consti-
tute a destruction term away from walls. We return to
this issue later.

The search for diffusion terms naturally focuses on
spatial derivatives of v;. Classical diffusion operators
are of the type V.([11/0]V v, ) with ¢ a turbulent Prandtl
number. They conserve the integral of v, save for
boundary contributions. However there is no reason
why the integral of v; should be conserved. Manip-
ulations of two-equation models often bring out diffu-
sion terms that are not conservative, for instance cross-
terms between Vk and Ve. By analogy we allow a non-
conservative diffusion term, involving first derivatives of
v,. We arrive at the following “basic” model:

DU:

1 . o
-.Bi_ =cp S+ ; V.(u,Vu,) <+ Cp2 (Vl/t)'

(2)




We break our convention for ¢, which belongs to the
¢ series, because of the traditional notation of Prandtl
numbers.

The diffusion term of (2) conserves the integral of the
quantity ¥} 72, Recall the lack of a destruction term.
This lack was responsible for a mild inconsistency in
isotropic turbulence. It could also invalidate the model
in the class of shear flows in which v, decreases (nega-
tive D,/ Dt) such as an axisymmetric wake. However,
the diffusion term can easily bring down the centerline
value of v, and the true constraint is that under (2) the
integral of 1} ***? cannot decrease. With the classical
exponents of the self-similar axisymmetric wake (length
scale o t1/3, velocity oc t=%/3), we find that the integral
increases provided that ¢z < 1. Even if the calibration
does not include the axisymmetric wake, it is preferable
to satisfy this constraint.

Another constraint may be obtained from the behav-
ior of a turbulent front. The diffusion term admits the
following (weak) one-dimensional solution:

vi(z,1) = max (o, A [x+ﬁ(—l-}ﬁﬁt]), 3)

for any constant A. This is a linear ramp propagating
at the velocity — A(14c¢p0)/0. If cp2 > —1 it propagates
into the non-turbulent region, which is physically cor-
rect. The equivalent of ¢y2 is 0 in the Secundov mode]
(the diffusion term is conservative). It equaled —2 in
the original Baldwin-Barth model {16] and is somewhat
below —1 in the published version (8], so that under the
diffusion term alone the turbulent front recedes. We
believe this effect is to blame for the sensitivity of that
model to the freestream value of v; (or Rr). Note that
Baldwin & Barth are constrained in their choice of ¢js
by the connection with the k-¢ model, in the original
version, and by their calibration in the log layer, in all
versions. We avoid this constraint thanks to a near-wall
term as explained below. The weak solution shown in
(3) is of great interest in practice, as it indeed gives the
structure of the solution at the edge of a turbulent re-
gion. This occurs because the diffusion term dominates
there (see Fig. 6, below).

An approximate analysis of the turbulent front, cou-
pling the eddy viscosity and the shear rate, indicates
that the ratio (14 c¢p2)/c also deserves attention. If it is
larger than 2 the eddy-viscosity front, which is a ramp,
is slightly ahead of the shear front, making the velocity
profile smoother. If it is lower than 2 the two fronts co-
incide. Ifit equals 1 the velocity profile of a mixing layer
is exactly triangular, i.e., |U,| exhibits a step which is
unphysical. Although these considerations border on
the cosmetic they indicate that (1 + cp2)/0 should be
larger than 1 and suggest that 2 may be a favorable
value.

The fact that the dependent variable vy itself is the
diffusion coefficient is responsible for the existence of

weak solutions such as (3), and raises the possibility of
non-unique solutions. Indeed if the initial condition is
{#|, we have a weak solution in which v, behaves like
|z|!/(2+<2) pear £ = 0, and a smooth solution with
v; > 0 at ¢ = 0. The difference is confined to a
boundary layer near z = 0. In a numerical setting with
straightforward second-order centered differencing, the
weak solution will be obtained if the diffusion term is
written vt V2 +(1+c32)(Vir)?, but the smooth solution
will be obtained if it is written as in (2). Other forms
that give the smooth solution are VZ(1?/2) + cpo(Viy)?
and (1+c¢p2) V(11 Vi) —cyor V2u;. The later addition of
a term proportional to the molecular viscosity formally
resolves this non-uniqueness and leads to the smooth
solution with v; > 0. However, particularly at high
Reynolds numbers, it is desirable to use a favorable form
of the diffusion term.

Outside a turbulent shear flow the Reynolds stresses.
particularly the diagonal components, do not exactly
vanish. However, they are induced by pressure fluc-
tuations and bear little relationship to the local strain
tensor S;;. For that reason, it is as well to have the eddy
viscosity be zero outside the turbulent region, and this
is the value we recommend in the freestream. In ad-
dition, the model is essentially insensitive to non-zero
values (which may help some numerical solvers), pro-
vided that they are much smaller than the values in the
turbulent region. This is due to the dominance of the
turbulent region (v; > 0) over the non-turbulent one, as
illustrated by the ramp solution (3). This feature adds
to the “black box” character of the new model and rep-
resents a substantial advantage over the Baldwin-Barth
model and many two-equation models, some of which
are highly sensitive to freestream values—that of the
time scale for instance.

The amplification of the eddy viscosity by the pro-
duction term is of interest. Note that the linearization
of (2) for small v, preserves only the production term.
Consider the steady flow at a velocity U, past a body
of size L, with thin shear- or boundary layers of thick-
ness &; these are orders of magnitude. Qutside the thin
shear layers the deformation tensor is of order Ug. /L so
that, irrespective of the exact definition of S, the log-
arithm of the amplification ratio will be on the order
of ¢p; (a growth rate on the order of ¢;;S over a resi-
dence time on the order of L/Uy). Thus, small values
will remain small. In contrast in the thin shear layers
the logarithm of the amplification ratio under the effect
of the production term alone would be on the order of
ey1L/6, and therefore large in the usual situation since
L > §. Thus small values of v,, whether inherited from
the freestream, or resulting from numerical errors, or in-
troduced intentionally at the “trip” as described later,
will cause transition in the thin shear layvers only. By
transition we mean growth to such levels that the dif-
fusion terms, which are nonlinear, become active. The



destruction term introduced later is also nonlinear. The
sequence of exponential growth, followed by saturation
at levels on the order of U4, is consistently observed in
practice. Note also that even though the contribution of
the ¢p2 term is positive the diffusion terms cannot cause
runaway growth. This is so because their contribution
is negative at a local maximum of v;. Recall also the
constraint on the integral of v} +*?, The eddy-viscosity
budget in a well-developed solution always includes a
sizeable contribution from the production term.

We now calibrate the free-shear-flow version of the
model by requiring correct levels of shear stress in two-
dimensional mixing layers and wakes. Fair values for
the peak shear stress are 0.01(AU)? in the mixing layer
and 0.06(AU)? in the wake, where AU is the peak
velocity difference [17]. This gives two conditions for
three free constants ¢y, o, and cy2, and leaves a one-
dimensional family of “solutions” which is shown in
Fig. 1 parametrized by the Prandtl number o, the eas-
iest quantity to interpret. The range of values of ¢ we
consider plausible is at most [0.6,1]. The corresponding
values of ¢;» are between 0.6 and 0.7 and satisfy our
“guidelines” (—1 < ¢y < 1) with a margin. The ratio
(1+4¢32)/0 varies from about 2.7 to 1.7 and also satisfies
its guideline (> 1).
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The solutions were obtained numerically using a
stretched grid, centered second-order finite differences,
Runge-Kutta fourth-order time integration, and zero
values in the freestream. This artless treatment would
rapidly reveal poor numerical properties in the model.
The growth of the layers was followed until a self-similar
state was attained. The solutions exhibit the ramp

structure at the edge of the turbulent region, as seen in
the mixing-layer case in Fig. 2. The centered-difference
solution cannot faithfully reproduce a weak solution at
the front, but the disturbance does not propagate. Time
steps in excess of the stability limit were revealed first
by short oscillations near the centerline.
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Figure 2: Profiles in a time-developing mixing layer.
Normalized with velocity difference and time. Velocity
profiles adjusted to the same slope at y = 0.

Based primarily on the edge behavior. we favor a
fairly diffusive member of our “plausible” range, namely
0 =2/3, cpy = 0.1353, ¢4y = 0.622, (14 cp2}/o ~24. In
the mixing layer it gives a velocity profile close to that
assoclated with identical “rollers” of uniform vorticity
(see Fig. 2). Very low values of 0 would be needed to
bring it close to the hyperbolic-tangent profile, which is
a common approximation. In the wake the peak eddy
viscosity is 0,46/ where M is the momentum of the
wake, in good agreement with experiment [18]. We did
not attempt to match any axisymmetric flow, partly
because they are not prevalent in our applications and
partly because, for most models, these flows conflict
with the 2-D flows. The model is not intended to be
universal.

Near-wall Region, high Revnolds Number

In a boundary layer the blocking effect of a wall is
felt at a distance through the pressure term, which acts
as the main destruction term for the Reynolds shear
stress. This suggests a destruction term in the transport
equation for the eddy viscosity. Dimensional analysis
leads to a combination —cy1(v/d)?, with d the distance
to the wall. The subscript w stands for “wall”. This




term will be passive in free shear flows (d — oc) and
therefore does not interfere with our calibration up to
this point. The Secundov model includes this type of
term (however their term differs from ours in the viscous
and the outer regions). The idea of a near-wall, but not
viscous, “blocking” term is also in Hunt [19]. It is also
related to the algebraic models, which take the smaller
of two eddy viscosities. The outer eddy viscosity scales
with the boundary-layer thickness, and the inner eddy
viscosity is given by the mixing length, | o d.

In a classical log layer with friction velocity u, we
have S = u,/(kd) and v; = urxd. Equilibrium between
the production and diffusion terms (all positive) and the
destruction term is possible provided
cw1 = o1 /K% + (1 +eya)/0.

Tests show that the model, when equipped with the
destruction term, can produce an accurate log layer.
This relies on the treatment of the viscous region, de-
scribed below. On the other hand it produces too low
a skin-friction coefficient in a flat-plate boundary layer.
This shows that the destruction term as formulated de-
cays too slowly in the outer region of the boundary layer.
To address this deficiency and allow a new calibration
we multiply it by a non-dimensional function f,., which
equals 1 in the log layer. Note that ¢, is not negotiable
(1.e., we would not adjust the Cy at the expense of the
log-law constants), and also that we were not able to
obtain an accurate skin friction just by using the free-
dom left by the free-shear-flow calibration (Fig. 1}. The
model becomes

Dv 1 4]
-D_tz = cmSur’r';' V. (V) + ez (VV‘)Q}_C‘UJW [(gt)]

Note that Secundov et al. did not follow the f,, route.

The choice of an adequate argument for f, was in-
spired by algebraic models, in which the mixing length
plays a major role near the wall. This length can be
defined by I = +/v/S and we use the square of I/xd as
a convenient non-dimensional argument:

— Vit
r= _SK2d2 . (5)

Both r and f,, equal 1 in the log layer, and decrease in
the outer region. Note that any dimensionally correct
function of (v;,d, S) that reduces to —cy145%u2 in a log
layer would be as eligible as the one we are choosing (4).
A satisfactory f,, function is

1+C63 1/ 6
f(r)=y[—‘” ] g=r+cuw (rf=r). (6
w 96+c|603 ( ) ()

This function is shown in Fig. 3. The results are
most sensitive to the slope of f, at » = 1, which is
controlled by cy2. The step from g to f, is merely a
limiter that prevents large values of f,,, which could up-
set the code and give an undeserved importance to the
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Figure 3: f. function involved in the destruction term.
see (4-6).

fact that S may vanish. The region r > 1 is exercised
only in adverse pressure gradients, and then rarely be-
yond r = 1.1. Having f,,(0) = 0 is not essential, because
in free shear flows the destruction term vanishes on ac-
count of the d? in its denominator. A reasonable value
for ¢y3 is 2. We then calibrate ¢y» to match the skin-
friction coefficient in a flat-plate boundary layer. We
adopt the value of the CTTM, namely Cy = 0.00262
at Ry = 10* [13], which requires ¢, = 0.3. All the
boundary-layer tests relied on a code written by Mr. D.
Darmofal, of M.1.T., during a short stay at Boeing.

Figure 4 shows the velocity, eddy-viscosity, and shear-
stress profiles in a flat plate boundary layer at Ry & 10*.
At 104, C; = 0.00262 and H = 1.31. The Clauser
shape factor G = /2/C;(H — 1)/H is settled at 6.6.

_and the shape of the profile is satisfactory. Notice

again the ramp structure of v; at the edge of the shear
flow. The peak value of v; 1s 0.021U 6", compared with
0.0168U 6" in the Cebeci-Smith model [2]. Conversely.
the Cebeci-Smith eddy viscosity is higher near y/6* = 1.
The shear-stress profile approaches the wall with a fi-
nite slope, rapidly turning to zero slope at the wall as
discussed in the context of direct-simulation results [15].

Figure 5 shows the velocity profile in wall coordi-
nates, illustrating the log layer and the smooth depar-
ture in the wake. Again, the shape of the outer region
appears good, showing that the destruction term and
the f, function are fair approximations, at least in this
flow. The arrival at the {reestream velocity is a little too
abrupt, as it was in the mixing layer, in Fig. 2. This be-
havior cannot be corrected except by making the model
very diffusive (low o).
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The budget of v; is shown in Fig. 6. The sum (i.e.,
Dv,/Dt) is positive throughout. It is 0 at the wall,
then roughly follows a ramp up to the edge of the tur-
bulent region. Its outer part is representative of the
outer part of either one of the free shear flows, in-
cluding the vanishing contribution of the destruction
term. The production is equal to the shear stress.
In the outer part the diffusion is primarily responsi-
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Figure 6: Eddy-viscosity budget in a flat-plate bound-
ary layer. Normalized with 7,.j.

ble for the advance of the turbulent front. in qualita-
tive agreement with the budgets of “legitimate” turbu-
lence quantities such as the kinetic energy. Near the
wall the diffusion again makes a strong positive contri-
bution, balanced by the destruction. The idea] near-
wall budget is. in the units of the figure, production
= 1, diffusion = k2(1 + c32)/0/cp1 & 3. destruction =
—1—=x2%(1+ cp2)/0/cy1 &= —4. Note that it is not main-
tained far up into the layer at all; correspondingly, v,
does not follow its ideal linear log-layer behavior (kyu,)
far up either (see Fig. 4). However this does not prevent
a log layer from forming. :

This completes the calibration of the model save for
viscous effects. We later examine the performance of the
model in what is probably the most sensitive situation,
the outer region of a boundary layer in adverse pressure
gradient.

Near-wall Region. finite Revnolds Number

In the buffer layer and viscous sublayer, additional
notation is needed. Besides the wall units, y* and so
on, we introduce v which will equal v, except in the
viscous region, and x = ¥/v. This is in analogy with
Mellor & Herring’s notation [20], because from the wall
to the log layer we have x = ky™.

We follow Baldwin & Barth [8] in choosing a trans-
ported quantity & which behaves linearly near the wall.
This 1s beneficial for numerical solutions: ¥ is actually
easter to resolve than U itself, in contrast with ¢, for
instance. Therefore, the model will not require a finer
grid than an algebraic model would. To arrive at this




we consider the classical log layer and devise near-wall
“damping functions™ that are compatible with known
results. These functions are distinct from the f,, near-
wall inviscid destruction term.

The eddy viscosity v; equals kyu, in the log layer,
but not in the buffer layer. We define I so that it equals
kyu, all the way to the wall. This leads to

3

~ X

vi =V fu1, ful— X3+C31. (7)
The f,; function is borrowed from Mellor & Herring.
The subscript v stands for “viscous”. We prefer the
value ¢,; = 7.1 to Mellor & Herring’s 6.9, which we
believe yields a low intercept for the log law. Other f,;
functions could be used, for instance the one compatible
with the Van-Driest damping is f,; = (V1 + 4172 —
1)/2x, where It = x[1 — exp(—x/kA*)] and At is the
familiar 26 [2]. We have not encountered cases for which
* the choice of f,; made a difference. Note that there is
no basis for (7) to apply at the edge of the turbulent
region, where y is also of order 1 and smaller. However,
the eddy viscosity has little influence there, because of

the absence of steep gradients.
The production term also needs attention. Init S is
replaced with S, given by

- v X
S=S+ m;fuza Joo=1- TTaF (8)
The function fy2 is constructed, just like fy;. so that
S would maintain its log-layer behavior (S = u,/(xy))
all the way to the wall. S is singular at the wall, but
v is 0 there, so that the production is well-behaved.
Note that there is a range of x in which S is less than
S and may become negative. This should not upset
the numerical solvers. Other quantities involved in the
“inviscid” model are redefined in terms of ¥ instead of
vy, for instance r = ¥/(Sk2d?).

We finally add a viscous diffusion term, consistent
with a Dirichlet boundary condition at the wall, 7 = 0.
This term too is based on an analogy, rather than a rig-
orous equation. In addition ¥ behaves linearly, so that
its Laplacian will be small in an established solution.
Accordingly, we insert the molecular viscosity in a con-
venient place and pay little attention to a factor of o.
The transport equation has become

~
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This equation now yields equilibrium (Dv/Dt = 0) all
the way to d = 0 in a classical law-of-the-wall situa-
tion. Furthermore, the numerical evidence shows that
this classical solution is a stable solution of the system

(9)

made of the momentum equation and (9), as it has been
obtained starting with a wide range of initial conditions.
This includes the results of Figs. 4 and 5: in particular
Fig. 5 displays the viscous and buffer layers.

Fine effects of pressure gradients or transpiration are
likely to strain the accuracy of the model, although we
expect the trends to be correct and the database is far.
from definitive. Note that the traditional tools for in-
serting these effects into the algebraic models are ruled
out, because they are not local.

Laminar Region and Tripping

The final set of terms provides control over the lam-
inar regions of the shear layers, a control which has
two aspects: keeping the flow laminar where desired.
and obtaining transition where desired. Navier-Stokes
codes with algebraic models usually have crude “off-on”
devices or short ramps based on the grid index along the
wall. These do not help the convergence of the codes. In
addition we require a device that is useable on unstruc-
tured grids. The subscript ¢ will stand for “trip”. We
use this word to mean that the transition point is im-
posed by an actual trip, or natural but obtained from a
separate method. On no account should the turbulence
model be trusted 1o predict the iransition location. This
is true of all the models we know. Some models. in-
cluding k-¢, predict relaminarization. In situations that
should induce relaminarization, this one tends to drop
the eddy viscosity to low levels, but without “snapping”
to 0. We may be able to improve on this using the fo
function below.

We described how transition was expected only in
thin shear layers. The linearized version of (9) for small
¥ only contains the production term: DU/Dt = ¢;,,57;
therefore, ¥ = 0 is an unstable solution of (9) (going
in the direction of D/Dt). In a boundary-layer code
the zero solution is easily maintained, but in a Navier-
Stokes code exactly-zero values are rarely preserved, so
that the model is “primed” by numerical errors up-
stream of the trip. It then transitions at a rate that
depends on numerical details and has little to do with
the boundary layer’s true propensity to transition, as
controlled by pressure gradient, suction, and so on. We
verified this behavior, and it is not acceptable.

A solution is to alter the production term so that
¥ = 0 is a stable solution, albeit with a small basin of
attraction. For this we take the convention that in the
laminar region ¥ is of order v at most, and recall the
argument x. Note that if ¥ < v, then v, € v, because of
the damping by f,;. We multiply the production term
by 1 — fi2, where

(10)

In order for 0 to attract U down from values on the
order of v/5, the following values are fair: ¢33 = 1.1,

fiz = ci3 exp(—cea 7).




cia = 2. In any case ¢;3 must be larger than 1. As
for cy4 it could be decreased several-fold, if a code still
yielded premature transition. The cross-over point of
1— fi2, (i.e., the bound of the basin of attraction), is at
x = /log(ci3)/ci4 . However, 2 was small enough in our
code. Values much smaller than 1 would start affecting
the results in the turbulent region.

In order to still balance the budget near the wall we
offset the change in the production term with an oppo-
site change in the destruction term, involving f;2. Again
we take an empirical approach, and have numerical evi-
dence that it yields a stable system. A user that is doing
boundary-layer calculations can leave the f;» term out
(ie., set c;3 = 0).

The task is now to obtain transition. We refer to
transition points, in 2-D, and transition lines, in 3D.
We address only boundary-layer transition, but a gen-
eralization to free shear flows will be easy. Usually each
2-D body has two transition points. We wish to ini-
tiate transition near these points in a smooth manner,
and compatible with any grid. For this a source term
is added that will be nonzero only in a small domain of
influence. This domain should not extend outside the
boundary layer. Not wanting to find this edge, nor vio-
late invariance principles, we invoke the quantities AU
and w;. AU is the norm of the difference between the
velocity at the trip (i.e., usually zero since the wall is
not moving) and that at the field point we are consid-
ering. w; is the vorticity at the wall at the trip point.
Upstream of the trip in a boundary-layer code, it is fair
to take w at the wall at the current station, since w
at the trip is not available yet. The thickness of the
boundary layer is on the order of U,/w;, where U, is
the edge velocity. Recall that it is still laminar. We
also introduce d;, the distance from the field point to
the trip point or line.

Storing, or repeatedly computing, d; for each field
point is a penalty, but it would not be difficult to keep
a list of the points that are within a reasonable distance
of the trip and to compute the trip term only for those.
The user may also watch for the following peculiar sit-
uation: the body could be so thin that the trip on one
side causes transition on the other side. A definition of
d; as the length of the shortest line that links the field
point to the trip while not crossing the body would solve
the problem, but in an expensive manner. It is simpler
just to override d; (i.e., set it to a large value) for field
points and trips that are known to be on opposite sides
of the body. The angle between the line from the trip
to the field point and the normal to the wall may be
useful.

Dimensional analysis points to AU? as a proper
scale for the source term, and we arrive at

Dv ~. 1 — 2
=l = fu) § 04— [To(0 + D)) + 12 (V9)°
Cy1 v 2

- [Cwlfw - 'K—thz] [2] + fu AU?, (11)
with
_ “’3 2 2 52
ft1=cu g: exp | —ce2 AU? [d +g,d,] | (12)

and g; = min(0.1, AU /w;Az) where Az is the grid spac-
ing along the wall at the trip. This equation specifies
the two f; terms, and the trip term is the last in (11).
The Gaussian in f;; confines the domain of influence of
the trip terms as needed; it is roughly a semi-ellipse.
The magnitude is adjusted so that the integrated con-
tribution for a particle crossing the domain of influence
is on the order or U.8, 6 the boundary-layer thickness,
as is ensured by typical algebraic models [2]. The odd
factor g, is passive in a situation with an extremely fine
grid, but is quite active and necessary in practice. This
is because the domain of influence of the trip scales with
the boundary layer thickness, which is very small in the
laminar part. As a result, that domain easily falls be-
tween two streamwise grid points, so that the trip is not
felt at all. The g, factor guarantees that the trip term
will be nonzero over a few streamwise stations.

The value ¢y = 2 reflects typical values of éw,/U,
in laminar boundary layers and is not a candidate for
much adjustment. Tests indicate a range of at least
two decades for ¢;; between values so low that transi-
tion miscarries, and values so high that I and the skin-
friction overshoot. The value ¢;; = 1 1s well within that
range; successful transition was obtained with 0.1 and
with 10. It is possible that at very low Reynolds num-
bers ¢4; would require more attention. In any case, we
recornmend that the user check for transition on both
surfaces. To start with, the two trips should bracket the
stagnation point. Except at very low Reynolds numbers
the skin-friction coefficient is enough of a criterion. Note
that the trips are often near the leading edge, in a re-
gion where the skin friction has violent variations due
to the pressure gradients. Therefore, it is advisable to
check the skin-friction coefficient a little downstream, in
a weak pressure gradient.

Note that the growth of ¥ to nonlinear levels un-
der the effect of the production term occurs in a few
boundary-layer thicknesses (cy; being roughly 0.13).
This is consistent with the idea that the trip term mim-
ics the secondary instabilities invoked by recent transi-
tion theories, which have growth rates on the order of
1/6. However since the streamwise grid is often much
coarser than &, transition will still appear very steep to
that grid. The contribution of the trip source term is
rapidly overwhelmed by the exponential amplification
due to production. Thus, we have a formal advantag




over the “ofl-on” models in that transition is a smooth
process, but in practice it is debatable. Naturally, an
adaptive grid will focus points at transition, and ap-
proach the ideal situation.

Initial and Freestream Conditions

Fair results have been obtained by initially setting ¥
uniformly to its freestream value. The turbulent vis-
cosity emanates at the trips and spreads without no-
ticeably degrading the convergence of the code. In the
freestream the ideal value is zero. Some solvers may
have trouble with this, either because of round-off errors
or some convergence tests dividing by . Freestream val-
ues of ¥ up to roughly /10 are easily tolerable with the
current c;3 and cq4 constants. Recall that the f,; factor
in (7) then makes v; much smaller than v, so that the
laminar boundary layers are not disturbed.

Numerical Solution Procedure

We expand on the approach of Baldwin & Barth [§]
for solution of the turbulence transport model within a
Navier-Stokes solver. The model is advanced in time us-
ing an implicit solution procedure designed to achieve a
positive turbulence field for all transient solution states,
as well as a fast convergence rate to steady-state. We
have incorporated the turbulence-model solution mod-
ule into a modified version of Martinelli & Jameson’s
FLO103 [21], where the updates of the velocity field and
the turbulence are decoupled at each time step. The
turbulence is updated at the start of each multistage
Runge-Kutta time step on the finest grid of the multi-
grid cycle; on coarser grids the turbulence is frozen.

We begin by rewriting the one-equation model (11)
in a form more convenient for numerical analysis,
ov - o~ v~
T M@+ POy —-D@)v+ T
where M(V)U is the combined advection/diffusion
terms,

(13)

M@ = ~(0 -9+ 2 (7 [(v+ 5)T5 + 2 (V5]

(14)
the production source term is
P(D)P = enl — fi2] ST, (15)

the wall destruction source term is

D= [t -2ra] [5] . 09

and the trip function is

T = fuAU?. (17)

Note that T and D(7V) are always positive or zero. and
P(V) is positive as long as S is positive,

Care should be used in interpreting our notation. For
example, the complete production operator is P(V)v
rather than P(7) alone. The notation is intended to
simplify the following matrix theory analysis.

The turbulence transport equation is discretized on a
grid with v the vector of unknowns at all grid points.
The solution is integrated in time using an implicit
backward-Euler scheme of the form,

[1- At (M(v") + B(v*) - D(v"))] Av" =
At[M(V") + P(v") = D(v")] v" + AIT

(18)

where the nonlinear matrix operators M, P, D and T
are the discrete analogues of M, P, D and T, respec-
tively; M, P, D are implicit matrices; At is the time
step; and Av is the solution change,

Avt = vl v,

(19)

The exact solution of the turbulence transport equa-
tion cannot become negative. It can be shown that if
7 = 0 at some location and the surrounding values are
non-negative, then /8t > 0. An underlying goal of
the solver is to reproduce this analytic behavior—a nen-
negative turbulence field-——throughout the solution pro-
cess (i.e. ¥ > 0 at all grid points and at all time steps).

We achieve this goal of a non-negative turbulence field
through the use of positive discrete operators and M-
type matrices. A positive operator, when applied to a
vector of non-negative elements, will produce a vector
with non-negative elements. An M-type matrix is di-
agonally dominant with positive diagonal elements and
negative (or zero) off-diagonal elements. A key prop-
erty of an M-type matrix is that its inverse contains
only non-negative elements; hence, the inverse of an M-
type matrix is a positive operator. Our goal can be
accomplished by careful discretization and construction
of the implicit operators M, P and D.

Rearrangement of (18) gives v**! directly as a func-
tion of v",

[I-At(M+P-D)]v*t = (20)
[1+At(M-M)+ (P-P)—(D-D))]v" + AtT.

Assuming v" is non-negative, then non-negativity of
v™+1 is guaranteed if the right-hand-side operator is
positive and the left-hand-side operator forms an M-
type matrix. Thus, sufficient constraints on the discrete
operators are given by,

—M is M-type (21a)
— P is M-type (21b)
+D is M-type (21¢)




M-M]v>0 forallv>0 (22a)
[P-P]v>0 forallv>0 (22b)
[D-D]v<o forallv>0 (22¢)

Baldwin & Barth show, for their model, that similar
constraints on the implicit and explicit operators in the
backward-Euler scheme guarantee positivity of the dis-
crete solution. They also show that these constraints
give unconditional stability of the numerical solution
procedure.

Description of the discretization and construction of
implicit matrices will be given in detail for 1-D, where
the notation is simpler. Extension to 2-D and 3-D is
straightforward because there are no cross derivatives
in the one-equation model.

The model is discretized using a cell-centered finite-
difference scheme.

Advection Operators

The advection terms are discretized using first-order
Vig1 — Vi

accurate upwinding,
)o (*57))
(23)

where the advection velocities U+ and U~ are defined,

Vi = Vi1

MWV = - [or (252

1 1, . .
U = s WU, U7 =51t (29

The Jacobian of the advection operator is,

Moy = = (=U)/Aas,
M) = - (+U} - U7)/Ax, (25)
) -
-1\—45,1541 = = (+U])/Az;.
Note that --I\_/I'(l) is M-type and (M — M)(Mv = 0,

satisfying the positivity constraints.

Diffusion erators

We have found that positive operators are more easily
constructed if the diffusion terms are rearranged into the
form,

1+ cpo

M@ = V- [(v+5) VD] - %Z(V+D')Vz'17, (26)
where liberties have been taken with differentiation of
the molecular viscosity v. The form of (26) avoids dis-
cretization of the term (V)?2, which does not easily lend
itself to positive discrete operators. The diffusion terms
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are discretized using second-order-accurate central dif-
ferencing.

M(v)v]}?) = 1 +Ucw Kl:; [(y N 3).'4.1/2%&_:1%
_(U+l7)i-1/z%;—i;71] , (27)

O
Gzt Ezta]

The diffusion coefficients (v+7);41/2 and (v+V);_y 2 at
cell faces are taken as averages of adjacent cell-centered
values,

0+ Disip = 5 04T+ 0+ D). (20

and Ar;y i/2 and Az;_y/; are distances between cell
centers.

. . —(2) (3]
The approximate Jacobians M’ ) and MY are ob-
tained by freezing the diffusion coefficients,

=2) 14 cp2 ~ 1
M., = —_— : I
§9-1 + o (V+V)l—l/2 AZIAI{—I/Qv
=2 14e¢ 1
Mi,f) = - "'"'ﬂ(l’ + ¥)i_ 1y e
o AI(AI,_]/:\ (30)
_ 1 + Cp2 (l/ + D,) 1
P i+1/2 Al‘,‘Al‘,‘,}.l/g.
—={2) 14 e ~ 1
M,/ = ; —_—
cip1 = + . (W +)iz1y2 AzArio:
(3 Ch2 1
M, ,=—-—= T Ona—
ha-l o (v+ m'AI;Ari_l/g
—3 Cp2 -~
My =+ 2+ D
o Ax;Azi_yy9 (31)
+ CL?(V + V) ——————
o 'A.’(,‘,’AI‘,'+1/2’
—{3) Cp2 ~ 1
M, = —— S -
hitl o (v + ) AziAzri1y0
These operators satisfy constraint (22a), since
M-MPv=0 [M-MPv=0 (32

When negated, the sum ﬁ2)+ws) forms an M-type

matrix. This can be shown by considering individual
matrix elements. For example, the sum of the matrix
elements above the diagonal becomes.

() 3 1
it M = PN NTRY *
(14 cp2)(V + P)ip1/2 — coalv + V)i |- (33)




Upon substitution of (29) for the diffusion coefficient at
the right cell face, then the sum becomes,
ﬁ(z) —{3) 1

2 Mim=s3o A
i1 T My QO'AIiAIi+1/2*

(1 + e2)(¥ + Dis + (1= e2)(w + 7). (34)

For —1 < ¢33 < 1, these elements are always positive.
Similarly, the elements below the diagonal are always
positive, and those on the diagonal are always negative.
Also, the magnitude of the diagonal elements are equal
to the sum of the off-diagonal elements. Hence, the
—(2)  =—3) . . o
sum M '4+M 7 is a negated M-type matrix, satisfying
constraint (21a).

Baldwin & Barth noted that the steady-state dis-
cretization of the diffusion terms in their model must
be modified on coarse grids to obtain a non-negative
turbulence solution. When written in the form of (26),
the diffusion terms of the Baldwin-Barth model give an
effective value of ¢y below ~1. Because of this, they
must limit the averaging of the diffusion coefficients to
cell faces to ensure their equivalent of M + M is
a negated M-type matrix. This limiting procedure re-
duces spatial accuracy. As shown by the above con-
struction, discretization of the present model’s diffusion
terms does not require similar modification. The con-
straint c32 > —1, derived on physical grounds, also plays
a crucial role in the numerical context.

Source Qgerators

The production, wall destruction, and transition trip
source terms all produce diagonal matrix operators,
so grid indices are ignored in the following analysis.
Though vector notation is used, all equalities and in-
equalities apply on a cell-by-cell basis.

The starting point for construction of the implicit
source terms P and D is the true Jacobians for the
production and destruction operators,

[P(v)v)
[D(v)v]'

P(v) + P/(v)v,
D(v)+ D'(v)v,

(35a)
(85Db)

where we use { )’ for convenience to denote differentia-
tion with respect to v. Also for convenience we define
the following operator:

z ifz>0
pos(z) = (36)
: 0 ifz<O.

Our objective is to choose P and D close to the true
Jacobians, namely [P(v)v]) and [D(v)v], so that rapid
convergence is obtained when the residuals are small,
while retaining strict adherence to the positivity con-
straints for all possible solution states. We give three
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possible strategies and explain why they are deficient
before discussing the strategy we actually employ.

The obvious choice of setting the implicit operators
equal to their true Jacobians does not satisfy the pos-
itivity constraints. For example, [P — PJv > 0 is not
met if P/ > 0.

A second strategy, which always satisfies the M-type
matrix constraints, is to take the negative part of the
production Jacobian and the positive part of the de-
struction Jacobian,

= —pos[—-P —P'v],
pos[D+ D'v].

(37a)
(37b)

o B |

This strategy is also defective and must be discarded
because the other two positivity constraints may not be
met. For example, if D > 0 and D’ < 0, then D-D < 0
will not be satisfied.

A third strategy is to use only the negative parts of
P and P’ in (35a) to form P, and the positive parts of
D and D’ in (35b) to form D,

(38a)
(38b)

P = —pos[—P)— pos[-P’)v,
D pos[D] + pos{D)v.

This is a viable strategy; the four source term positiv-
ity constraints are satisfied for all possible sign combi-
nations of P, P/, D and D’. However, we discard this
strategy because of its slow convergence rate.

In a typical flow situation, both production and de-
struction increase in magnitude as ¥ is increased (i.e.,
P, D and their derivatives are all positive). In this case
our third strategy chooses,

P=0, D=D+D'v=[D(w)Vv]. (39)

This is equivalent to integrating the production term
explicitly and the destruction term implicitly; this tech-
nique has often been used for solution of k-¢ models. Al-
though this strategy guarantees positivity, 1t can result
in extremely slow convergence in regions where produc-
tion and destruction are large and dominate the equa-
tion budget. In these regions, the Jacobians [P(v)v)’
and [D(v)v])’ will be individually large but will tend to
cancel. Now if only [D(v)v]’ is used to update the so-
lution, then the contribution to the diagonal element
of the matrix will be excessive; the resulting solution
change Av will be correspondingly small even when the
residuals are not close to zero.

This possible analytic cancellation of the individually
large Jacobians motivates our final strategy for choosing
the implicit source terms. Rather than concentrating on
the individual production and destruction Jacobians, we
consider the source terms combined together and use a
variation of (38),

D - P = pos|D — P] + pos[D' = P'lv.  (40)



With the source terms taken together, only two positiv-
ity constraints are required,

D-P>o,
P]=[D-P)-

Examining the four possible sign combinations for [D —
P] and [D — P}, these positivity constraints are always
satnsﬁed by (40). Furthermore, analytic cancellation of
production and destruction is reflected in (40}, resulting
in superior convergence compared to (38).

(41a)

[D-D]-[P - [D — P] > 0.(41b)

We evaluate the Jacobians P’ and D’ analytically us-
ing the chain rule. The differentiation is straightfor-
ward, except for the wall destruction term f,. Since
evaluation and differentiation of f,, involves terms like
r~% and r!2, care must be taken for r small or large,
lest one’s computer begins to complain. The form of
(6) gives acceptable numerical behavior for r — 0. For
large r, the function f,, asymptotes to [1 4 ¢53]*/%, so
above some cutoff (say r = 10), the derivative (fy)’ is

set to zero. .

Approximate Factorization

With the implicit and explicit operators properly de-
fined, the backward Euler solution procedure (18) guar-
antees a positive turbulence field at each update. It
does, however, require expensive inversion of a large
sparse matrix in 2-D or 3-D. Approximate factoriza-
tion of the implicit operator will reduce the cost of an
update, but unconditional positivity is lost. To see this
effect consider a 2-D flow with zero source terms. The
unsplit implicit system is,

[1— At (M, +M,)] Av® = At (M + M,)v", (42)
where M¢ and M,, are finite differences in the £ and
7 coordinate dlrectxons, respectively, and Mf and M,

satisfy the positivity constraints (21a) and (22a). Ifthe
implicit operator is approximately factorized, then the

system becomes,
[1- AtM(] [T- AtM, ] Av™ = At (Mg + M,) v".
(4
Rearranging this system to isolate v"1?! gives,

[1- AtM] [I- AtM,] v
+ At(M,

= [I <+ At(ME - ﬁe)
-M,) + APMM,| v, (44)

The splitting error results in the term At*MM,v,
which may not be positive. For small enough At the
splitting error will not ruin positivity, but the constraint
equation on At is a nonlinear matrix equation in itself
and is quite difficult to solve.

We conclude that there appears to be no approximate
factorization of (18) that retains the unconditional pos-
itivity of the original unsplit system. We propose using
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subiterations of an approximate factorization scheme at
each time step, which will recover the update of the
original unsplit system at convergence (of the subit-
eration process). We use the subiteration process of
Steinthorsson & Shih [22], where the splitting error is
simply lagged one subiteration. The objective of the
approximate factorization is then to minimize splitting
error for rapid convergence, and to minimize the num-
ber of subiterations where the candidate updated field
contains negative points.

In 2-D we have tried conventional ADI with an addi-
tional factor due to the source terms,

[I- AtM{] [I- AtM,] [I- A¢(P -D)] av"
= AtRv", (45)

where R is the residual or right-hand-side operator in
(18). We have also tried the approximate factorization
developed by Shih & Chyu [23] for finite-rate chemistry,

[N — AtM] N1 [N — AtM,] = AtRv", (46a)
N=1-A(P-D) (46b)

As discussed in [23], this second form has lower splitting
error and converges much faster to the unsplit update
than conventional ADI. However, even this second form
requires several subiterations at start up to achieve a
non-negative updated turbulence field; for example, ap-
proximately 30 subiterations are needed for a time step
of At = 10 (based on chord and freestream density and
pressure) to eliminate all negative updated points.

We use an approximate factorization that outper-
forms both (45) and (46). Prior to splitting, we divide
through by the diagonal element of the implicit opera-
tor, then use a conventional approximate factorization.

Denoting the diagonal elements of the implicit advec-
w—e{d )

tion/diffusion operators as md) and M, ", the scheme
becomes,
- AV [1- AN, Ave = ARV, (47)
where
= 1" r—
M = [1- a(M{" + M," + P -D)| [M, - §"].
. N T N
M, = [1- atM" + M, + P -D)| [M,, M,].
R =[1-a(" +¥,) +P- f)‘)]
(48)
We incorporate this approximate factorization

scheme into a subiteration process in the fashion of
Steinthorsson & Shih [22], where the splitting error

AtzMEM Av is lagged one subiteration,

[1- AT Av®) = AfRY™ — AV (Av — Av)ED

[1- AT, Av®) = Av-®)
(49)




The second step equation has been used to rewrite the
splitting error on the right-hand side in the first step;
Av" is a convenient definition.

In practice this splitting performs quite well. Using
a constant At throughout the field, we have yet to en-
counter a situation where a negative turbulence update
occurs even on the first subiteration. This includes tests
where At was varied over several orders between 0.001
and 1000.

From numerical experimentation, we choose At
10 and stop subiterating when the normalized change
|AT/ (v + D)||2 is reduced below 0.01. Typically, 10 to
20 subiterations are needed for initialization transients
and approximately 30 are required when the transition
trip function “wakes up”. Within a few time steps only
one subiteration is needed.

This procedure of dividing through by the diago-
nal elements also improves the scheme’s resistance to
round-off error in the inviscid region where ¥ is small.
The solution module will still function properly if the
freestream 7, or the initial guess for ¥ is set to zero.
In comparison, round-off errors may cause negative up-
dates, even at convergence of the subiterations, if either
(45) or (46) is used.

The model shows promising convergence to steady-
state when coupled to the solver for the velocity field.
Convergence is typically as good or better than that
for the Baldwin-Lomax algebraic model. This may be
due to the absence of “blinking” phenomenon in the
present model. In algebraic models, convergence to
steady-state may be adversely affected by discontinu-
ous behavior. For example, the position where the eddy
viscosity switches between inner and outer formulations
may wander back and forth between adjacent cells, slow-
ing convergence or causing a limit cycle.

Results

Boundarv-Layer Calculations

Only incompressible boundary layers have been con-
sidered. With zero pressure gradient, the model obeys
the accepted Reynolds-number scaling, so the results
shown at Ry = 10% ensure agreement with the cur-
rent theories. The model gives satisfactory results in
attached boundary layers with pressure gradients, typi-
cal of the Stanford 1968 cases. We only present results
for the sink flow and the Samuel-Joubert flow [24] as
the other cases with moderate gradients show the same
trend. Darmofal’s code was used again.

In the sink flow, with an acceleration parameter
K = vJU2(dUs/dz) equal to 1.5 x 1075, we obtain
C; = 0.00535, H = 1.35, and Ry = 760. These results
are well within the experimental range, which is about
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Figure 7: Ski-friction coefficient in Samuel-Joubert flow,
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Samuel-Joubert flow, in meters.

[0.0050,0.0057] for Cy, [1.35,1.42] for H, and [700, 800]
for Ry. The eddy-viscosity profile is atypical. Because
of the lack of entrainment in the sink flow, it does not
show a front at the edge of the boundary layer. Instead.
it extends into the freestream region. This did not dis-
turb the velocity profile, which is satisfactory both in
terms of thickness and shape.

In the Samuel-Joubert flow the agreement is rather
good for the skin friction, Fig. 7, and the thicknesses.
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Fig. 8. The model produces slightly higher skin fric-
tion, but lower thicknesses. The shape factors (Fig. 9)
are in disagreement even before the pressure gradient is
applied, and are the root of the disagreement in thick-
nesses. With an adverse gradient, the skin-friction term
loses its authority in the momentum equation. The ex-
perimental values for £ between 1 and 2m, H =~ 1.39,
are surprisingly high considering the weak pressure gra-
dient and the Reynolds number, Ry = 6500. Interest-
ingly, the calculated shape factor is catching up with
the experimental one for z > 3m.

Figure 10 shows the velocity at x = 3.4m. The posi-
tion of the boundary-layer edge is good, but the com-
puted profile is fuller than the experimental profile. The
shear-stress profiles in Fig. 11 show good agreement for
the outer values, but the near-wall agreement may be
poor enough to partly explain the differences in the ve-
locity profiles. Stress disagreements can of course be
compounded by the convection and pressure terms. Cu-
riously Dr. F. Menter, who was kind enough to test the
model in his Navier-Stokes code [25], obtained similar
agreement for the stress profiles, but better agreement
for the velocity.

The Samuel-Joubert results suggest a mild but gen-
uine tendency to underpredict the shape factor and
thicknesses in adverse pressure gradients. This may
make the model a little more resilient to separation than
it would ideally be. The tendency is not as strong as
with the Cebeci-Smith, Baldwin-Lomax, and k-¢ mod-
els, but our comparison with experiment is not quite
as good as that obtained by Menter with the Johnson-
King and k-w models [25]. Both models have been
finely tuned over years, with an emphasis on precisely
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U
Figure 10: Velocity profile at z = 3.4m in Samuel-

Joubert flow. U normalized with edge velocity. vy in
meters.
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this type of flow. Nevertheless, the behavior of the
new model is not disappointing and vindicates the no-
tion that a model calibrated for mixing layers, wakes.
and zero-gradient boundary layers has a good chance in
adverse-gradient boundary lavers, which are an inter-
mediate situation. In addition, an improvement of the
destruction term may yet be found sufficient to obtain
results on a par with the best models. '




Navier-Stokes Calculations

We present three cases of the RAE 2822 airfoil; the
first two have a sharp trailing edge but shock interac-
tions of different strengths, and the third has a blunt
trailing edge.

Navier-Stokes calculations for Cases 6 and 10 on the
RAE 2822 airfoil [26] were performed using the present
model, as well as the Baldwin-Lomax and Johnson-King
turbulence models. The Johnson-King results were ob-
tained using the Navier-Stokes code of Swanson [27].
Results for each model were computed on 384 x 80 and
768 x 160 grids to minimize numerical errors. These
grids were generated by the elliptic method of Wig-
ton [28]). The medium and fine grids contain 257 and
513 points on the airfoil, respectively.

All calculations for Case 6 were performed at the same
conditions: M = 0.725, Re = 6.5 x 108, a prescribed
lift coefficient of C! = 0.743, and transition trips at
3% chord. Results on the 768 x 160 grid are shown in
Figs. 12 and 13. All models converged solidly on both
grids.

Figure 12 shows a comparison of surface pressures
for Case 6 obtained with the three turbulence models
and experiment [26). The shock for the present model
is about 1.5% chord farther forward than in the ex-
periment or as predicted with the Baldwin-Lomax and
Johnson-King models, but well within the scatter of var-
ious models as reported at the Viscous Transonic Airfoil
Workshop (VTAW) [6]. The new model is farther from
the experiment near the leading edge on the upper sur-
face, but closer to the experiment near the trailing edge
on the lower surface. All the calculations reveal small
pressure glitches near the trailing edge. With the new
model on the fine grid, the angle of attack was 2.37°,
the drag coefficient 0.0121, and the moment coefficient
—0.091, compared with 2.92°, 0.0127, and —0.095 in the
experiment, respectively.

Figure 13 shows the upper-surface skin-friction coeffi-
cient for the same case. Between the three models there
is a difference of up to 10% upstream of the shock, and
similar but reversed differences downstream of it. The
new model does not predict wall-shear reversal. The
other two predict reversal at the foot of the shock, but
only on the finest grid {768 x 160). Reversal was never
predicted at the VTAW, where the finest grid used was
369 x 65. It appears that with current codes the simple
question of whether reversal occurs is not firmly an-
swered even at grid resolutions that are considered very
fine. At the shock, the new model produces a larger
step up for the boundary-layer thicknesses than with
Baldwin-Lomax, resulting in a more forward position.
Interestingly, the size of the displacement effect is not
correlated with the occurrence of reversal at the wall.
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Flow conditions for the RAE 2822 Case 10 are Af =
0.75, Re = 6.5 x 10°, a prescribed lift coefficient of
Cl = 0.743, and trips at 3% chord. The new mode]
obtained a steady solution on the 384 x 80 grid, but
produced a limit cycle on the finer 768 x 160 grid. All
the cyclic variation was in the separation bubble. The
new model also produced a limit cycle on the 384 x 80
grid when the artificial dissipation in the Navier-Stokes
solver was cut in half. Baldwin-Lomax and Johnson-
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King produced steady solutions on both grids. Results
for Case 10 are presented in Figs. 14 and 15 for all three
turbulence models on the 384 x 80 grid.

As usual, Case 10 produces larger differences than
Case 6. With our policy of matching the Mach number
and lift coefficient the new model gives a better answer
than Baldwin-Lomax, and slightly better than Johnson-
King (see Fig 14). This is in terms of shock location
and pressures near the leading edge, upper surface, and

trailing edge. lower surface. All the models fail to agree
with experiment for z/¢ > 0.7, upper surface. The new
model predicts a flattening pressure for z/c > 0.9, up-
per surface, in qualitative disagreement with the exper-
iment. The Johnson-King model has shown the same
trend, but not as strongly and only in Coakley’s imple-
mentation [6]. The Baldwin-Barth model also produces
the flattening [8].

This behavior of the C, is correlated with that of
the skin-friction coefficient, Fig. 15. Downstream of
the shock, the experiment and our Johnson-King re-
sults show the skin friction returning to strong posi-
tive values. The flow reattaches firmly. The Baldwin-
Lomax results show weakly positive skin friction over
a short stretch. With the new model the skin friction
grazes zero before again taking moderate negative val-
ues. There is no reattachment, and the flattening pres-
sure distribution reflects it. Note that a similar be-
havior has been observed with algebraic models: if the
skin friction approaches zero smoothly enough the Van-
Driest damping can, erroneously, “shut down™ the eddy
viscosity across the whole layer. This is not what is
happening here.

The limit cycle behavior of the new model on the fine
grid shows an oscillation between slightly negative and
slightly positive skin friction near z/c = 0.8.

The apparent failure to reattach is not a favorable
result, and this behavior was also observed in another
separated case (B. Paul, personal communication}. The
solutions show a very low eddy viscosity near the wall.
A run with a more diffusive model (i.e., lower o) that
could have helped the eddy viscosity diffuse towards the
wall failed to show much difference. However we do not
believe there is a structural reason for the failure to reat-
tach, based on two tests. The first is a calculation of
reattachment on our boundary-layer code, modified to
a time-developing code; a layer of reversed flow near the
wall was eliminated as could be expected. The second
is an unpublished calculation by Menter of a separation
bubble; again the skin friction returned to positive val-
ues without hesitation. Numerical errors in our current
Navier-Stokes/turbulence-model solver may be playing
a role.

For Case 10, with the new model on the 384 x 80
grid, the angle of attack was 2.52°, the drag coefficient
0.0238, and the moment coefficient —0.104, compared
with 3.19°; 0.0242, and —0.106 in the experiment, re-
spectively.

The blunt-trailing edge airfoil is RAE 2822, truncated
at 94% of the original chord (base height 1.14% chord).
Our objective is to explore the behavior of the model
and of the numerics at corner-induced separation, with
high-lift applications in mind. Accordingly we chose
Case 1 [29] which is subcritical: M = 0.676, Re
5.4 x 10°%, and lift coefficient C! = 0.451. Calculations
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Figure 16: Velocity contours near the trailing edge for
Case 1, blunt RAE 2822 airfoil. Levels: —0.007 (small
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were performed on medium and fine two-block grids.
The fine grid consists of a 768 x 160 C-grid block around
the airfoil and a 128 x 64 block downstream of the blunt
trailing edge. The grid contains 513 points on the airfoil

and 65 points across the blunt base. The medium grid yc §

contains blocks of 384 x 80 and 64 x 32. Results for Case
1 are presented for the fine grid.

Strong convergence was obtained, and solution
glitches are less severe than with the sharp trailing edge.
The angle of attack for Case 1 is 2.035°, the drag coef-
ficient 0.0097, and the moment coefficient —0.061, com-
pared with 2.45°, 0.0098, and —0.060 in the experiment,
respectively.

In another example of slow convergence of the detail
features in the flow, the amplitude of the backflow dou-
bles between the 384 x 80 grid and the 768 x 160 grid.
The region with negative velocities extends a little over
one step height (i.e., 1.35% on the fine grid, the step be-
ing 1.14% chord) beyond the trailing edge. The report
on the experiment also shows about 1.2 step heights,
but the interpolation is debatable in that the U = 0
line is shown with an apex, probably due to the under-
standable sparsity of the measurements. The region of
reversed flow should not be confused with the displace-
ment body invoked in integral boundary-layer methods,
which tends to be much longer (2.5 to 5 step heights).
Figure 16 shows velocity contours, with the expected
wedge-shaped region of low velocity. Figure 17 shows
the minimum velocity in the wake, which is in fair agree-
ment with the experiment [29]. The computed curve is
shifted by about 0.5% chord downstream. This suggests
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Figure 18: Streamlines near the trailing edge for Case
1, blunt RAE 2822 airfoil.

that the model not only gives an accurate growth rate
for a fully-developed wake (per its calibration), but is
also fairly accurate for a “young”, asymmetric one. The
wake of a wing, which is combined with a mixing layer.
is still a different problem; nevertheless, we expect the
model should also be able to treat it well.

Figure 18 shows streamlines (but not equally-spaced
stream-function contours). Their pattern is unexpected.
being rather asymmetric and indicating “reattachment”
of an upper-surface streamline near the mid-point of the
base. There are three half-saddles, one saddle, and two
nodes. This differs from the “educated guess” made, for
instance, in [30]. That guess assumes that the stream-
lines connected to the three half-saddles meet at the full
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saddle, isolating the two nodes. There is no reason for
such a pattern to occur in the absence of symmetry, and
it is not stable. The saddle and the lower node could also
eliminate each other under other conditions. Streamline
patterns can overstate the importance of regions with
low velocity and little dynamical significance.

Figure 19 shows eddy-viscosity contours. Continu-
ity between the grid blocks, which is hard to achieve
with algebraic models, is of course observed. The

1.04
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eddy viscosity blends its boundary-layer behavior (as
in Fig. 4) into its wake behavior (a bell-shaped distri-
bution). There is little basis to judge its level in the
recirculation region.

Finally Fig. 20 shows the pressure distribution. The
agreement is good, especially considering the 0.415° dif-
ference in angle of attack, except that the calculated Cy
is shifted down. This was also observed by Drela for his
numerical method [31]. We also ran Case 4 to measure
the Reynolds-number effect. In the experiment, Case 4
had the same angle of attack as Case 1, but a Reynolds
number of only 1.9 x 10, resulting in a loss of 0.036 in
C;. We ran Case 4 with imposed C; = 0.415, and the
angle of attack settled at 1.94°. The lift-curve slope is
about 0.155 per degree. This implies that the C; loss
due to the lower Reynolds number is about 0.022. This
is only about 60% of the lift loss observed in the exper-
iment.

Summary of the results

We have exercised the model outside its domain of
calibration and with the full Navier-Stokes equations,
instead of just the boundary-layer equations. Its com-
patibility with unstructured grids has yet to be used,
but there is no need to demonstrate it. In a few cases
with shock-induced separation the new model yielded
a limit cycle, with a pulsation of the bubble, when the
algebraic models yielded steady solutions. Since time-
accurate solutions are very expensive, steady solutions
may be greeted as successes whether they are physi-
cally correct or not. Outright divergence of the iterative
process has never occurred, and the model seems to be
reasonably “friendly” to the relaxation process, without
any attention being paid to the initial condition. Thus,
the model appears robust enough to be implemented by
independent users, in a variety of codes and physical
situations, and it should be particularly attractive to
unstructured-grid users.

The accuracy so far is consistent with our expecta-
tions. The model’s response to gradual or steep pressure
gradients, and to the removal of the blocking effect of
the wall, is encouraging. The post-shock reattachment
in an adverse pressure gradient has proven to be difficult
for the model. Menter also reported somewhat disap-
pointing results over a backward-facing step, traced to
an excessively-rapid build-up of the shear stress (per-
sonal communication). This weakness also afflicts the
k-¢ model, and may respond to a modification of the
fu function. The quality of our results with the blunt
trailing edge indicate that this problem cannot be very
severe. It appears that the calibration cases are in-
deed representative enough of the flows of interest to
ensure decent performance in non-trivial situations, and
to warrant extensive applications and tests of the model
in its present form.




Outlook

The development of the model will nevertheless con-
tinue. It will preserve the basic favorable features of
the model: single transport equation, local formulation,
moderate resolution requirements, good numerical sta-
bility, insensitivity to the freestream value, ready con-
trol of transition. The invariance principles will also be
upheld. Additional tests will be made, notably in three
dimensions. No additional difficulties are anticipated.
Tests in more strongly stimulated flows such a massive
separation, wakes in pressure gradients, or free vortices,
are likely to reveal weaknesses in the model. They will
also stress the current Navier-Stokes codes, in two re-
spects. The first is the detail accuracy, for instance the
conservation of momentum in boundary layers, which
is far from perfect in our experience. This problem has
been obstructed by the difficulty in computing the thick-
nesses §* and @ in Navier-Stokes codes, but it must now
be addressed, if only on a flat plate at low Mach number.

The other aspect is the question of steady solutions
in flows with medium- or large-scale separation. An
classic example is the flow past a circular cylinder; a
pressing industrial example is the flow past a stalled
airfoil, near its maximum lift coefficient Ci mar- Except
at very low Reynolds number the flow is unsteady and
three-dimensional. On the other hand, provided the ge-
ometry is time-independent, it is legitimate to define its
time-average and to hope for a code that would com-
pute it as a steady solution. It is also legitimate to re-
quest the low-frequency component (i.e., with Strouhal
number of order 1) of the solution, particularly the fluc-
tuating loads for structural purposes. The ideal turbu-
lence would include a switch between these two options.
We do not know, in general, whether the exact solu-
tion of the Navier-Stokes/turbulence-model system in
its present form is steady. In the design of some models,
decisions have been made solely on the basis of a prefer-
ence for the candidate that yielded steady solutions. We
are far from having the capability of routinely perform-
ing time-accurate calculations to explore the issue. All
the routine calculations aim at steady solutions. Failure
to converge, and the generation of a limit cycle, may be
a sign that the exact solution is unsteady. It may also
be just a numerical problem.

Envision a steady solution, say past a cylinder. An
algebraic model such as, for instance, Baldwin-Lomax
would be used out of its range, but this does not stop ea-
ger users. In the recirculating region it would yield eddy
viscosities on the order of U R, with Uy the freestream
velocity and R the cylinder radius. We presume here
that the Baldwin-Lomax fmsr condition would occur
in the wake, and not near the wall. A balance be-
tween production, on one side, and diffusion and de-
struction, on the other, suggests that the new model
also could produce a solution with an eddy viscosity
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of order U R in the recirculation region. A Reynolds
number based on that viscosity would be finite, which
shows that there is no immediate scaling argument that
can predict whether a steady solution can be stable.
This question must await extensive tests. The pressure
to produce time-accurate Navier-Stokes codes will only

increase, even if the steady-state codes have not reached

perfection.

Even when unsteady solutions of the modeled equa-
tions are obtained, their meaning will need scrutiny.
Many of the properties of Reynolds-averaging hold ap-
proximately if there is a separation of scales (i.e., a spec-
tral gap) between the resolved motions and those that
are left to the turbulence model. We have little evidence
in that domain. An example of legitimate decomposi-
tion would be a mixing layer that wanders on a time
scale much longer that its internal time scale which, af-
ter modeling, is §/AU (with & the thickness, and AU
the velocity difference). Note that what we envision
here is different from Large-Eddy Simulation. As the
grid is refined the model does not change, the way it
does in LES (through a narrowing of the filter, so that
the limit is direct simulation). The difficulty of LES is
the filtering without spectral gap. Instead, we converge
to a smooth solution of the modeled equations.

Some of the near-future directions have been hinted
at above. There is the choice of S, between the vortic-
ity, the strain rate, or another scalar norm of the de-
formation tensor. There is the use of an approximation
of the turbulent kinetic energy k to give the Reynolds-
stress tensor a plausible trace (or set of eigenvalues).
There is a modification of the fy, function in the region
r > 1, that would alter the results only on adverse pres-
sure gradients. The third modification could be assessed
in the Samuel-Joubert or airfoil flows, but obvious test
cases for the first two are not at hand.

The current model has no compressibility terms. Em-
pirical terms based on the turbulent Mach number, such
as the one in the Secundov model, or on the quantity
Vp.Vi are available. The former may be calibrated
in supersonic mixing layers. The latter may assist the
model in shock/boundary-layer interactions if a consis-
tent trend is found that shows an erroneous shock lo-
cation, and we can extricate that trend from numeri-
cal concerns (e.g., artificial dissipation) and from the
endless corrections of transonic airfoil testing. In that
range of density variations it may be enough to write
the transport equation in terms of /i instead of v, tak-
ing advantage of the flexibility in placing p inside or
outside various derivatives. This is consistent with the
spirit in which the model was devised. To this date.
efforts to devise a curvature term with the required in-
variance properties and no d-dependence have failed.
Note that curvature effects have been observed in free
shear flows. Three-dimensional effects in boundary lay-
ers (i.e., pressure-gradient vector at an angle to the ve-




locity vector) are also delicate to introduce even empir-
ically without viclating the invariance principles. No
plans have been made to depart from a scalar eddy vis-
cosity.
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Appendix: Summary of the Model. Version 1

We solve the Reynolds-averaged Navier-Stokes equa-
tions and a transport equation for the turbulence model.
The Reynolds stresses are given by —uu; = 2v,5;;
where S;; = (8U;/0z; + 0U;/0zi)/2. The eddy vis-
cosity v; is given by

3

X —
fv1=——T X =

, (A1)
Xa + Cu1

Ve = g.ful’

R

v is the molecular viscosity. 7 is the working variable
and obeys the transport equation

Dv ~. 1
-D_'ti = o1 [1 = fu) § 04~ (V. (v + P)T) + e (vvf]
~q2
¢ v
- |ewifuw — :bzl‘ftz] [E] + fu AU? (A2)
Here S is the magnitude of the vorticity,
- v X
= —_— v2=1— ——o) A
S S+K2d2f‘v27 f2 1 1+val ( 3)

and d is the distance to the closest wall.

The function f,, is

1484
9%+ ¢85

1/6
fw=9[ ], g=r+cw2(r6-—r),r5

v
Sk2d?’

(A4)
For large r f, reaches a constant, so large values of r
can be truncated to 10 or so.

The wall boundary condition is ¥ = 0. In the
freestream 0 is best, provided numerical errors do not
push ¥ to negative values near the edge of the bound-
ary layer (the exact solution can’t go negative). Values
below v/10 will be acceptable. The same applies to the
initial condition. The fi2 function is

fi2 = iz exp(—cua x2). (A5)

21

The trip function f;; is as follows: d, is the distance
from the field point to the trip. which is on a wall. w, is
the wall vorticity at the trip, and AU is the difference
between the velocity at the field point and that at the
trip. Then g; = min(0.1, AU/w;Az) where Az is the
grid spacing along the wall at the trip, and

fi=cu g exp (—Cﬂ YNGE [4% + g;"df]) . (A6)

The constants are ¢y = 0.1355, 0 = 2/3, cp2 = 0.622,
k = 041, cp1 = co1/k% + (1 + cp2)/0, cw2 = 0.3,
cws3=2,¢p1 =71, cn=1,¢c0=2,ci3=1.1, cra = 2.
Turbulent heat transfer obeys. a turbulent Prandtl num-
ber (not to be confused with ¢} equal to 0.9.
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